4 U

T AL
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for revi TR 0 1 - aining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden eshrmte oran AFRL SR-BL r reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for information Op~r2tions and Reports | 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penaity a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. O / QB
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE ETY)]
1 Dec 1997 Final technical report + aug 1996 - ‘1 Dec 1997
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER31 y_ .. o+

Combining AI and OR in Heuristics and Optimization

5b. GRANT NUMBER
F49620-96-1-0413

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
J. N. Hooker

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . 8. PERFORMING ORGANIZATION REPORT
NUMBER

Graduate School of Industrial
Administration

Carnegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) . 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Office of 801 N Randolph St Room 732 AFOSR/NM
Scientific Research / NM Arlington VA 22203-1977
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
12. DISTRIBUTION / AVAILABILITY STATEMENT
e LN I ¢
AR FORCE 0 o
B A CIENTIFIC RESEA
MIMGEGF i, o RCH AFOSR)

HAS BP"N o] 4 o TH’S TECHN’CAL R[Hﬁ'ﬂ-

13. SUPPLEMENTARY NOTES

ROVEDF L

14. ABSTRACT

Mixed logical/linear programming (MLLP) was developed as an extension of mixed integer/linear
programming. What appears to be the first practical method of sensitivity analysis for mixed
integer/linear programming was developed and applied to a Proctor and Gamble supply chain
problem. Consistency-achieving methods of constraint programming were linked with constraint
generation methods in operations research. Continuous relaxations were identified for mixed
discrete/continuous optimization problems that can accelerate their solution within a logic-
based approach. A research monograph, Logic-Based Methods for Optimization, was written.

15. SUBJECT TERMS ,
Optimization, constraint programming, logical inference

16. SECURITY CLASSIFICATION OF: 1*. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES J. N. Hooker
a. REPORT b. ABSTRACT c. THIS PAGE 16 19b. TELEPHONE NUMBER (include area
code)
412 268 7589

Standard Form 298 (Rev. 8-98)
Prescribed by ANS! Std. 239.18




Combining AI and OR in Heuristics and Optizuzation:
Final Report

AFOSR Grant No. F49620-96-1-0412

J. N. Hooker

Principal Investigator

Graduate School of Industrial Administration
Carnegie Mellon University, Pittsburgh, PA 15213 USA
412-268-7589, fax 412-268-6837, jh38@andrew.cmu.edu

December 1997

20010402 092




1 Objectives

The original objective of this research project was to investigate how ideas
from artificial intelligence and operations research can be combined in both
optimization methods and heuristic algorithms. The project was proposed
by Jon Cagan, Ignatio Grossmann and John Hooker, all of Carnegie Mellon
University. The grant award, however, supports only John Hooker. Because
his research has recently focused primarily on optimization as opposed to
heuristics, the scope of the project has been reduced accordingly.

2 Status of Effort

Substantial progress has been made toward achieveing the objectives of the
research. 1) Mixed logical/linear programming (MLLP) was developed as
an extension of mixed integer/linear programming. It was shown not only
to provide a more flexible modeling framework but in many cases to accel-
erate solution. 2) What appears to be the first practical method of sen-
sitivity analysis for mixed integer/linear programming was developed and
applied to a Proctor and Gamble supply chain problem. It is based on defin-
ing the dual of an optimization problem to be a logical inference problem.
3) Consistency-achieving methods of constraint programming were linked
with constraint generation methods in operations research. This provides
a means of augmenting the cutting plane methods traditionally used in op-
erations research. 4) Continuous relaxations were identified for mixed dis-
crete/continuous optimization problems that can accelerate their solution,
within a logic-based approach. In particular, they can drastically speed the
solution of some standard location/distribution problems and fixed charge
network design problems. 5) A research monograph, Logic-Based Methods
for Optimization, was brought close to completion.

3 Accomplishments

Accomplishments were obtained in the five areas mentioned above. The
first two, MLLP and integer programming sensitivity analysis, represent
substantial advances in optimization methods. The third area, which in-
volves consistency-achieving methods, is largely a reinterpretation of previ-
ous work. The research on relaxations is in early stages but already points
to a substantial improvement in methods for fixed charge network problems.




The research monograph will sum up what is known in its field.

3.1 Mixed Logical/Linear Programming

This represents joint work of J. N. Hooker and M. A. Osorio and is de-
scribed in [10]. It proposes an extension to mixed integer/linear program-
ming (MILP). It shows how to formulate the discrete aspects of an opti-
mization problem with logical propositions rather than integer variables.
It demonstrates with computational tests that MLLP not only has greater
modeling flexibility but can substantially accelerate solution of the problem.
The paper attempts to draw together previous and new results into a com-
prehensive description of MLLP. It is based on a rethinking of the role of
integer variables. It also provides a framework for integrating the modeling
and algorithmic advances of constraint programming with the methods for
operations research. ‘

It is likely that future modeling and solution software will combine fea-
tures associated with mathematical programming (OR) with those associ-
ated with constraint programming (AI). This is already beginning to occur
and will bring a major change in the way optimization problems are solved.
The research described here is designed in part to provide a theoretical and
algorithmic basis for this development.

3.1.1 The Idea of MLLP

Mixed logical/linear programming (MLLP), as presented in [10], is a gen-
eral approach to formulating and solving optimization problems that have
both discrete and continuous elements. It extends mixed integer/linear pro-
gramming (MILP) by introducing logic-based modeling and solution options.
MLLP in no way rejects integer programming and in fact incorporates all of
its techniques. Its expanded modeling framework may, however, allow more
natural or succinct formulations without sacrificing solution efficiency. Its
larger repertory of solution techniques may accelerate solution or even solve
problems that are intractable for MILP alone. These techniques include
branching strategies, relaxations and logic processing algorithms that are
not ordinarily associated with integer programming.

Mixed discrete/continuous problems are traditionally conceived as con-
tinuous problems in which some of the variables are restricted to be integers.
MLLP permits one to take a different view. Rather than embed the discrete
aspects of the problem within a linear programming model, which may not




be the most natural approach, one can represent them with logical formulas.
MLLP therefore has the option of dispensing with integer variables. Rather
than require that a feasible solution satisfy a fixed set of inequalities, an
MLLP model can contain several alternative sets of inequalities. The logical
formulas govern which sets must be satisfied by a feasible solution.

3.1.2 General Form of an MLLP
An MLLP model has the form

min cz . (1)
s.t. Pj(y’ h) - (AJ:B 2 a'j)a JEJ I Qi(y’ h), 1€l

The constraint set has a logical part (on the right-hand side of the bar) and
a continuous part (on the left).

The logical part consists of formulas ¢;(y, h) that involve atomic propo-
sitions y = (y1,...,Yn), which are either true or false. Such a formula might
be q1(y, h) = y1 V2, which says that y; or y2 (or both) must be true. There
may also be some variables h = (hy,..., ;) that take several discrete val-
ues. Thus g¢;(y,h) could be (y1 V y2) A (h1 # hy), where A means ‘and.” In
general the formulas p; and ¢; may take any form that is convenient for the
purpose at hand, provided that their truth value is a function of the truth
values of the propositions y and the values of the discrete variables h.

The continuous part associates logical formulas p;(y,h) with systems
Alz > a’ of linear inequalities. A system A’z > a7 is enforced when p;(y, h)
is true. So the constraints of the following problem in effect require z to
satisfy A'z > a! or A%z > a? (or both).

min czr
st. y1 - (Alz >al) Y1V
yo = (A%z > a?)

In general, (z,y, h) is feasible if (y, h) makes all the logical formulas g;(y, h)
true, and z satisfies the linear systems corresponding to the formulas p;(y, h)
that (y, h) makes true.

3.1.3 Solution of an MLLP

The problem (1) can be solved by branching on the truth values of the y;’s
and the discrete values of the h;’s. At each node of the search tree, one
solves a linear programming problem (LP) containing the constraints that

4



correspond to true p;’s, plus any inequalities added to strengthen the re-
laxation. A key element of MLLP is to apply a logical inference algorithm
to the logical formulas before solving the LP. This may generate valid con-
straints (constraints satisfied by all feasible solutions) in logical form, and
in particular it may fix some additionai y;’s and h;’s.

An MLLP can therefore be solved in a manner that is analogous to the
traditional branch-and-cut algorithms used in MILP. There are two primary
differences, however. First, as one descends into the tree, the LP’s solved
at the nodes are not necessarily defined by fixing certain variables in them.
They may also be defined by adding new constraints corresponding to for-
mulas that fixed variables make true, or by some combination of the two
methods.

A second difference is that at each node of the search tree, the logical
part of the constraint set can be processed with its own set of algorithms,
in order to generate additional constraints or check for feasibility. These in-
clude many of the logic programming and constraint satisfaction techniques
that appear in the computer science and artificial intelligence literatures (dis-
cussed below). MLLP therefore provides one means of uniting mathematical
programming with methods have been developed more or less independently
in other fields.

3.1.4 Motivation for MLLP

The primary rationale for MLLP is that it brings to mathematical program-
ming greater modeling power and a wider range of solution options. But
MLLP also grows out of a rethinking of the role of integer variables.

Traditionally integer variables have in most cases served a modeling func-
tion and a relaxation function simultaneously. It is proposed here that
these functions be separated. When integer variables provide the most nat-
ural modeling device for certain constraints, e.g. knapsack constraints, they
should be used to formulate those constraints. When a certain portion of
the constraint set has a useful continuous relaxation when formulated with
integer variables, they should be included in that portion of the problem in
order to obtain the relaxation.

In other cases, however, inequalities may not provide the most convenient
way to formulate the discrete aspect of the problem. Also their continuous
relaxation may be weak, or its effect may be duplicated by adding a few
valid inequalities that involve only the original continuous variables. Fur-
thermore, it will be seen that integer variables may have fractional values



in the continuous relaxation even when a feasible solution of the original
problem has been found. Thus if one branches on integer variables with
fractional values, branching may continue unnecessarily.

In such cases, integer modeling may not justify the overhead it incurs.
The inclusion of integer variables enlarges the linear programming problems
that must be solved at nodes of the search tree. This can be particularly
costly when there are many discrete variables, because it may be possible
to process the discrete elements of the constraint set much more rapidly in
logical form. A simple constraint propagation algorithm, for example, may
have the same ability to detect infeasibility in logical constraints as solving
the linear relaxation of their inequality formulation. But its speed may be
two or three orders of magnitude greater, because it need not carry along
the data structures and machinery of a linear solver. Other types of logic
processing may obtain valid constraints or fix variables in ways that are not
available in MILP. ‘

The primary drawback of MLLP is that it requires more expertise on
the part of the user. It provides more options but presupposes that the user
knows how to choose the best one. In particular, if integer variables are not
used, then the traditional continuous relaxation is unavailable, and it may
be necessary to concoct an alternate relaxation.

3.2 Inference-based Sensitivity Aanalysis

This represents joint research with Milind Dawande (who received no sup-
port from the grant). Despite the importance of sensitivity analysis in ap-
plications, no method of sensitivity analysis for MILP has found ~cceptance.
This paper describes what appears to be the first practical methe 1 of MILP
sensitivity analysis, at least for moderately-sized problems. It was tested on
a supply chain problem involving Proctor and Gamble operations in Mex-
ico. This may be the first time MILP sensitivity analysis has been used in a
practical context. The method is based on a general logic-based approach to
sensitivity analysis proposed by Hooker in [7]. The key idea is to define the
dual of an optimization problem to be a logical inference problem whose so-
lution is a proof. Sensitivity analysis becomes the task of analyzing how the
problem data can be changed without invalidating the proof. In MLLP, a
sensitivity range for any problem coefficient can be readily found by solving
a linear programming problem.




3.2.1 The Basic Idea

A connection between sensitivity analysis and duality has long been recog-
nized. Solution of the linear programming dual, for example, reveals the
sensitivity of the optimal value to perturbations in the right-hand sides of
the primal constraints. Linear programming duality can be viewed as a
special case of inference duality, which provides a general approach to sen-
sitivity analysis. In particular, it provides a practical method of sensitivity
analysis for integer and mixed integer programming.

Inference duality is based on a fundamental duality of variables and con-
straints in optimization problems. From one point of view, a given problem
concerns what values should be assigned the variables. From the dual point
of view, it concerns what may be inferred from the constraints. These two
views give rise to two complementary solution approaches: search and in-
ference. The primal problem is solved by search methods that enumerate
values of the variables, as in a branching algorithm or heuristic search. The
goal is to find optimal values. The dual problem is solved by using infer-
ence methods to generate new constraints, as in constraint propagation and
cutting plane methods. The goal is to infer a best possible bound on the ob-
jective function value. The two approaches can often be profitably combined
in such primal-dual methods as branch-and-cut.

Solving the dual problem in a sense ezplains why the optimal value is
optimal, because it shows how the optimal value can be derived from the
constraints. Sensitivity analysis can be viewed as part of this explanation:
it examines the role of each constraint in the proof of optimality. It may
reveal, for example, that certain constraints play no role at all and can be
dropped, or that other constraints can be altered in certain ways without
affecting the proof and therefore without making the optimal value worse.

The classical duality-based sensitivity analysis for linear programming
has been generalized to nonlinear and integer programming, in the latter
case by analyzing how the optimal value depends on the vector of right-
hand sides. But the generalization suggested here takes a different direction.
Rather than viewing the dual solution as a numerical function of right-
hand sides, it views the dual solution as encoding a proof of optimality.
The classical linear programming dual can be seen as a special case of this,
because the dual multipliers specify a linear combination of constraints that
prove the optimal value to be optimal. But inference duality can diverge
from classical dualities in a more general context.

Unlike other methods of sensitivity analysis, an inference-based method




applies at least in principle to any optimization problem. This was estab-
lished in [7]), which introduced the inference-based approach and showed
how to apply it to any discrete problem that is solved by a simple branching
algorithm.

This approach is adapted in [2] to mixed integer programming (MILP).
Existing approaches have never been widely used in practice, due in part to
the complexity of computing and interpreting the dual solution. One goal of
[2] is to demonstrate that the inference-based approach is computationally
feasible and can yield useful information at least in the case of moderate-
sized problem instances. :

Obviously a key element of the inference-based approach is solving the
dual. It was shown in [3] how to obtain a dual solution of a pure 0-1 opti-
mization problem by examining a simple branching tree. The solution takes
the form of a proof that uses resolution, a well-known inference technique.
This paper generalizes this approach by combining resolution with classical
linear programming duality. It shows how to extract a dual solution for
any mixed integer/linear problem, even when the branching tree uses linear
relaxations, bounds, and certain common classes of cutting planes.

Sensitivity analysis of a minimization problem consists of two parts. One
part determines how much the problem can be perturbed without decreasing
the objective function value more than a specified amount. The other part
gives an upper bound on how much the objective function will increase if
the problem is perturbed by a given amount. The first part of the analysis
is the focus of this paper, because it requires solution of the inference dual.
The second part of the analysis is straightforward, as it can be obtained by
performing classical linear programming sensitivity analysis on the linear
relaxation at an optimal leaf node of the search tree.

The two parts of the analysis are asymmetric, but this seems to follow
naturally from the asymmetry of primal and dual solutions. One part of the
analysis uses a certificate of feasibility for the dual problem (i.e., a proof of
optimality), and one uses a certificate for feasibility for the primal problem
(an optimal leaf node of the search tree).

3.2.2 Previous Approaches

This analysis may be contrasted with that of Schrage and Wolsey in [11],
which is also based on information obtained from the branch-and-bound
tree. Their method computes a piecewise linear value function that pro-
vides a lower bound on the optimal value that results from perturbing the



right-hand sides a given amount. The computation involves the repeated
nesting of minima and maxima of linear functionals obtained by solving
linear programming duals at nodes of the search tree. Their analysis also
provides a bound on the objective function coefficient of a proposed new
problem variable, above which the variable will not enter the optimal solu-
tion.

The present analysis is more general, in that it permits perturbations
of any of the problem data, including the objective function and constraint
coefficients as well as the right-hand sides. It also avoids computation of a
value function. Rather, it provides a system of linear inequalities, derived
from information collected at leaf nodes of the search tree, that is satisfied
by any allowable set of perturbations. One can set any desired subset of
perturbations to zero and obtain upper and lower bounds on any remaining
perturbation by solving two linear programming problems.

Inference duality has other applications. For example, it permits a gen-
eralization of Benders decomposition to any optimization problem. Benders
cuts are a special case of “nogoods,” a well-known idea in the constraint
satisfaction literature, but they exploit problem structure in a way that no-
goods generally do not. Logic-based Benders decomposition is developed
in [3]. Other connections between logical inference and optimization are
discussed in [4, 5, 6, 10].

3.2.3 The Inference Dual

Consider a general optimization problem,

min 2z = f(z) ()
st. z€ S
z €D.

The domain D is distinguished from the feasible set S. For instance, D might
be vectors in R" or 0-1 vectors. The feasible set S is defined implicitly by
a set of constraints that £ must satisfy.

To state the inference dual it is necessary to define the notion of implica-
tion with respect to a domain D. Let P and @ be two propositions about x;
that is, their truth or falsehood is determined by the value of z. P implies
Q with respect to D (notated P 2, Q) if Q is true for any = € D for which
P is true.




The inference dual of (2) is

max 2z 3)

s.t. :z:ES—B-)f(.'I:)?_Z

So the dual seeks the largest z for which f(z) > z can be inferred from the
constraint set.

A strong duality theorem is true almost by definition. (Let the optimal
value of a minimization problem be respectively co or —oo when the problem
is infeasible or unbounded, and vice-versa for a maximization problem.)

Theorem 1 (Strong Inference Duality) The optimization problem (2)
has the same optimal value as its inference dual (3).

Proof. If z* is the optimal value of (2), then clearly z € S implies
f(z) > z*, which shows that the optimal value of the dual is at least z*.
The dual cannot have an optimal value larger than 2*, because this would
mean that f(z) = z* cannot be achieved in (2) for any feasible z. If (2) is
infeasible, then any z is feasible in (3), which therefore has optimal value
oo. If (2) is unbounded, then (3) is infeasible with optimal value —oo. O

If z* is the optimal value of the primal problem (2), then solving the dual
(3) is tantamount to constructing a proof of f(z) > z* using the constraints
as premises. This requires inference rules that are complete in a relevant
sense; i.e., they provide a way to infer any valid implication of the form
f(z) > z from the type of constraints that appear in the problem. In
the context of linear programming, valid inferences are obtained by taking
nonnegative linear combinations of ineyuality constraints. The completeness
of this rule is essentially the content i the classical separation lemmas for
polyhedra, as will be seen in the next section.

Note that if a proof of (z € S) L, f(z) > 2* is obtained, where 2* is
the optimal value, the same proof shows that (z € S) 25 (z) 2 z* — Az
for Az > 0. This is important in sensitivity analysis, as one often asks what

perturbations do not reduce the optimal value below 2* — Az for some given
Az.

3.3 Generating Valid Cuts

The constraint satisfaction literature contains a number of algorithms for
achieving “consistency,” with the aim of reducing the amount of backtrack-
ing necessary to solve a problem by tree search. This paper reinterprets

10




these algorithms as analogous to cutting plane algorithms in integer pro-
gramming. It is intended to forge a link between constraint satisfaction
and integer programming. It introduces mathematical programmers to a
concept, namely consistency, that has never been clearly recognized in the
field.

3.3.1 Another Perspective on Cuts

Cutting planes have been a major research focus in the operations research
community since the 1950’s. They make possible the branch-and-cut solu-
tion of many integer and mixed integer programming problems that would
otherwise be intractable. The rationale for their use almost always relates
to the linear relaxation of the problem: they strengthen the relaxation in
order to obtain a better bound on the optimal value when the relaxation is
solved. ‘

Valid cuts serve another purpose, however, that has not been clearly dis-
tinguished in the mathematical programming literature. They can directly
reduce the size of the search tree even when they are not used in a relax-
ation. In fact this perspective gives rise to an alternative theory of valid
cuts that in some sense parallels cutting plane theory. Such a theory has
been developed in the constraint programming literature. It provides several
ways to reduce backtracking that are largely unknown in the mathematical
programming community. The paper [8] presents the elementary aspects of
this theory in a way that highlights some of the parallels with mathematical
programming. It is written for persons with a background in operations
research.

3.3.2 An Example

A simple example illustrates how valid cuts can prune a search tree even
when they are not used in a relaxation. Suppose that a 0-1 programming
problem contains the following constraints.

1+ T100 2 1
1 — 100 2 0 : (4)

There is obviously no feasible solution in which z; = 0. Suppose further
that the problem is solved purely by branching on variables in the order
Z1,...,T100; DO relaxations are used. If the z; = 0 branch is taken first,
it may be necessary to search the entire subtree of 21%0 — 1 nodes thereby

11




generated in order to discover that it contains no feasible solutions. However,

if the valid cut
I Z 1

is added to the constraint set, the branch z; = 0 is ruled out from the start.

A mathematical programmer is likely to view this as an example of pre-
processing that fixes a variable. In fact several preprocessing techniques can
be viewed as special cases of constraint satisfaction methods. As conceived
in operations research, however, preprocessing tends to be a bag of tricks
without a unifying theory. The aim here is to provide a theory that not
only encompasses many preprocessing ideas but much more as well. The
cut z; > 1, for example, can be viewed as making the constraint set (4)
“strongly 2-consistent,”! which helps to reduce backtracking.

An additional advantage of studying cuts from this perspective is that
constraints need not be in inequality form, because they need not occur
in linear relaxations. The constraint satisfaction community has taken full
advantage of this greater generality. It formulates models with multi-valued
discrete variables in addition to boolean and integer variables. It uses logical
propositions, all-different constraints, and other non-inequality forms than
can give much more succinct formulations of a problem. It may be far from
evident how to formulate relaxations in such cases, but the tree-pruning
power of valid cuts is still available. '

3.4 Continuous Relaxations

Continuous relaxations for discrete problems are normally obtained by writ-
ing them a mixed integer/linear programming problems and removing inte-
grality constraints on the variables. Joint research with Hak-Jim Kim has
revealed that a much more concise relaxation can sometimes be obtained by
projecting the constraints onto the original continuous variables. Projection
normally multiplies constraints, but in some case the opposite occurs. In
addition, the projected relaxation may have special structure lacked by the
traditional one. For example, the relaxations of fixed-charge network flow
problems and warehouse location problems become min cost network flow
problems when projected. This could enormously acelerate solution of these
problems. The technical paper is in preparation.

!Technically, to achieve strong 2-consistency, the cut z; > 1 must be used to reduce
the domain of z; from {0, 1} to {1} rather than as an explicit constraint. This is because
the cut has only one variable.

12




3.5 Logic-Based Methods for Optimization

A book by this title has been largely completed by J. N. Hooker. It will be a
comprehensive treatment of logic-based methods for optimization. Chapters
include,

Example of Logic-Based Modeling and Solution
The Logic of Propositions

The Logic of Discrete Variables

The Logic of 0-1 Inequalities
Logic-Based Modeling

Logic-Based Branch and Bound
Constraint Generation

Continuous Relaxations

Branching Heuristics

General Solution Strategies
Inference Duality

Logic-Based Benders Decomposition
Sensitivity Analysis

Relaxation Duality

Discrete Relaxations

4 Personnel Partially Supported

1. Maria A. Osorio. At the time of this research Maria Osorio was study-
ing for a Ph.D. under Professor Sergio Fuentes Maya of Universidad
Nacional Auténoma de México (UNAM). She visited Carnegie Mellon
for a year a half to work with Hooker, during which time she was par-
tially supported by AFOSR. She subsequently received her doctoral
degree at UNAM and is on the faculty at Universidad Auténoma de
Puebla.

2. Hak-Jin Kim. He is a Ph.D. student in operations research at Carnegie
Mellon University, supervised by J. N. Hooker. The research described
above will become part of his dissertation.

5 Publications (Submitted or Accepted)

The following sre articles related to the research described here that were
submitted and/or accepted in the past 12 months.

13




1. Dawande, M., and J. N. Hooker, Inference-based sensitivity analysis
for mixed integer/linear programming (1997), submitted.

2. Hooker, J. N., Constraint satisfaction methods for generating valid
cuts, tu appear in Proceedings of INFORMS Computer Science Tech-
nical Section meeting, January 1998.

3. Hooker, J. N., and M. A. Osorio, Mixed logical/linear programming
(1997), submitted.

6 Interactions

6.1 Presentations

1. Optimization and constraint satisfaction, tutorial, INFORMS Com-
puter Science Technical Section meeting, Monterey, AC, January 1998
(to be presented by John Hooker)

2. Inference-based sensitivity analysis for MILP, INFORMS Computer
Science Technical Section meeting, Monterey, AC, January 1998 (to
be presented by John Hooker)

3. Inference-based sensitivity analysis for discrete optimization problems,
INFORMS meeting, Dallas, November 1997 (presented by Milind Dawande).

4. Inference-based sensitivity analysis for MILP, International Mathe-
matical Programming Symposium, Lausanne, Switzerland, August 1997
(preseuted by Milind Dawande).

5. Optimization and constraint satisfaction, Hong Kong University of
Science and Technology, July 1997 (presented by J. N. Hooker).

6. Mixed logica/linear programming, Hong Kong Polytechnic University,
July 1997 (presented by J. N. Hooker).

7. Optimization and Constraint Satisfaction, 4-hour short course, Es-
cuela Nacional de Optimization y Analysis Numerico (ENOAN’97),
Aguascalientes, Mexico, March 1997 (presented by J. N. Hooker).

8. Mixed logical/linear programming, INFORMS meeting, Atlanta, Novem-
ber 1996 (presented by Maria Osorio).

14




6.2 Industry Interaction

The inference-based method for sensitivity analysis described above was
applied to a supply chain management problem in Proctor and Gamble
Mexico. The application is described in,[1]. The analysis was carried out
by the authors of [1] but was not used by the company.

Although mixed integer/linear programming (MILP) has been used for
at least two decades, this is to our knowledge the first time that MILP
sensitivity analysis has been applied to a life-sized problem from industry.

References

[1] Dawande, M., S. Gavirneni and S. Tayur, Effective heuristics for multi-
product shipment models (1997), submitted for publication.

[2] Dawande, M., and J. N. Hooker, Inference-based sensitivity analysis for
mixed integer/linear programming (1997), submitted for publication.

[3] Hooker, J. N., Logic-based Benders decomposition (1996). Available on
http://www.gsia.cmu.edu/afs/andrew/afs/jh38/jnh.html.

[4] Hooker, J. N., A quantitative approach to logical inference, Decision
Support Systems 4 (1988) 45-69.

[5] Hooker, J. N., Generalized resolution for 0-1 linear inequalities, Annals
of Mathematics and Artificial Intelligence 6 (1992) 271-286.

(6] Hooker, J. N., Logic-based methcds for optimization, in A. Borning, ed.,
Principles and Practice of Cr=siraint Programming, Lecture Notes in
Computer Science 874 (1994) 336-349.

[7] Hooker, J. N., Inference duality as a basis for sensitivity analysis, in E. C.
Freuder, ed., Principles and Practice of Constraint Programming—CP96,
Lecture Notes in Computer Science 1118, Springer (1996) 224-236. Also
to appear in Constraints.

[8] Hooker, J. N., Constraint satisfaction methods for generating valid cuts,
to appear in Proceedings of INFORMS Computer Science Technical Sec-
tion meeting, January 1998.

[9] Hooker, J. N. Logic-Based Methods for Optimization, in preparation.

15




[10] Hooker, J. N., and M. A. Osorio, Mixed logical/linear programming
(1997), submitted for publication.

[11] Schrage, L., and L. Wolsey, Sensitivity analysis for branch and bound
integer programming, Operations Research 33 (1985) 106.-1023.

16




